Quantum Computing with superconducting qubits: Applications in Chemistry and Physics

Ivano Tavernelli

IBM Research - Zurich

PhD colloquium, University of Pavia, Italy February 14, 2019

New opportunities

A look into the new cosmology

Medieval conception of the universe (Woodcut)

A look into (quantum) technology

By Christian Gralingen

Outline

Why quantum computing? Quantum Logic The IBM Q Hardware & Software Applications

Quantum chemistry

Many-body physics

Optimization

Outline

Why quantum computing? Quantum Logic The IBM Q Hardware & Software Applications

Quantum chemistry

Many-body physics

Optimization

Future of computing

1971

First integrated circuit Size ~1cm² 2 Transistors Moore's Law is Born Intel 4004 2,300 transistors

2014

IBM P8 Processor ~ 650 mm²
22 nm feature size, 16 cores
> 4.2 Billion Transistors

Alternative (co-existing) architectures:

next generation systems (3D/hybrid)

neuromorphic (cognitive)

quantum computing

Ivano Tavernelli - ita@zurich.ibm.com

Types of Quantum Computing

Quantum Annealing

Optimization Problems

- Machine learning
- Fault analysis
- **Resource** optimization
- etc...

Many 'noisy' qubits can be built; large problem class in optimization; amount of quantum speedup unclear

Approximate NISQ-Comp.

Simulation of Quantum Systems, **Optimization**

- Material discovery
- Quantum chemistry
- Optimization
- (logistics, time scheduling,...)
- Machine Learning

Hybrid quantum-classical approach; already 50-100 "good" physical qubits could provide quantum speedup.

Fault-tolerant Universal Q-Comp.

Algorithms

- Algebraic algorithms

Surface Code: Error correction in a Quantum Computer

Proven quantum speedup; error correction requires significant qubit overhead.

Execution of Arbitrary Quantum

(machine learning, cryptography,...) Combinatorial optimization Digital simulation of quantum systems

Types of Quantum Computing

Quantum Annealing

Optimization Problems

- Machine learning
- Fault analysis
- **Resource** optimization
- etc...

configuration/path

Many 'noisy' qubits can be built; large problem class in optimization; amount of quantum speedup unclear **Approximate Q-Comp.**

Simulation of Quantum Systems, Optimization

- Material discovery
- Quantum chemistry
- Optimization (logistics, time scheduling,...)
- Machine Learning

Hybrid quantum-classical approach; already 50-100 "good" physical qubits could provide quantum speedup.

Execution of Arbitrary Quantum Algorithms

- Algebraic algorithms

Proven quantum speedup; error correction requires significant qubit overhead.

Ivano Tavernelli - ita@zurich.ibm.com

Fault-tolerant Universal Q-Comp.

(machine learning, cryptography,...) Combinatorial optimization Digital simulation of quantum systems

Surface Code: Error correction in a Quantum Computer

Outline

Why quantum computing? Quantum Logic The IBM Q Hardware & Software Applications

Quantum chemistry

Many-body physics

Optimization

The qubit

Bloch Sphere representation

one bit	one qubit
0,1	0 <i>)</i> , 1 <i>)</i>

Qubit: linear superposition

$$|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

with

$$|\alpha_0|^2 + |\alpha_1|^2 = 1$$

Shown here is the state

$$|\psi\rangle = 0.95|0\rangle + (0.18 + 0.25i)|1\rangle$$

90.25 % of the measurements give $|0\rangle$ and 9.75 % give $|1\rangle$

Single-qubit gates

Ivano Tavernelli - ita@zurich.ibm.com

Y

Two-qubit gates - entanglement

SWAP gate

Controlled NOT gate (CNOT)

	/1	0	0	0
CIMAD =	0	0	1	0
SWAR -	0	1	0	0
	$^{\prime 0}$	0	0	1/
	00>		>	00>
	$ 01\rangle$	_	>	$ 10\rangle$
	$ 10\rangle$		>	$ 01\rangle$
	111		2	111

	/1	0	0	0
	0	1	0	0
NOI —	0	0	0	1
	/0	0	1	0/
	00>	\rightarrow		00>
	01>	\rightarrow		01>
	$ 10\rangle$	\rightarrow		$ 11\rangle$
	111>	\rightarrow		110>

Preparation of a Bell's state

The simplest entangled state

$$|00\rangle \rightarrow \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \rightarrow \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = |10\rangle$$

Hadamard

CNOT

Given two qubits $|\psi_1\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$ and $|\psi_2\rangle = \beta_0 |0\rangle + \beta_1 |1\rangle$ a Bell state cannot be represented as product state $|\psi_1\rangle \cdot |\psi_2\rangle = \alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle \neq |\psi_{\text{Bell}}\rangle$

$|\psi_{ m Bell} angle$

Outline

Why quantum computing? Quantum Logic

The IBM Q Hardware & Software

Applications

Quantum chemistry

Many-body physics

Optimization

Physical qubit realizations

Quantum Bits:

Example: Atom orbitals with different energetic levels

Neutral Atoms

© Haroche

Quantum Dots

© Petta

Ion Traps

© Blatt & Wineland

Superconducting Circuits

IBM: Superconducting Qubit Processor

Superconducting qubit (transmon):

- quantum information carrier
- nearly dissipationless \rightarrow

 T_1 , $T_2 \sim 70 \ \mu s$ lifetime, 50MHz clock speed

Microwave resonator as:

- read-out of qubit states
- quantum bus
- noise filter

$E_{01} \approx 5 \text{ GHz} \approx 240 \text{ mK}$

Inside an IBM Q quantum computing system

Microwave electronics

at 15 mK protected from the environment by multiple shields

40K

3K

Refrigerator to cool qubits to 10 - 15 mK with a mixture of ³He and ⁴He

Chip with superconducting qubits and resonators

IBM qubit processor architectures

IBM Q experience (publicly accessible)

16 Qubits (2017)

5 Qubits (2016)

IBM Q commercial

50 Qubit architecture

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Package

Latticed arrangement for scaling

The power of quantum computing is more than the number of qubits

STEE

Improving the error rate will result in a more powerful Quantum Computer

Qubits Added: 0 Error Rate Decrease: 10x Quantum Volume Increase: 24x

Quantum Volume depends upon

Number of physical QBs

Connectivity among QBs

Available hardware gate set

Error and decoherence of gates

Number of parallel operations

Qubits Added: 100 Error Rate Decrease: 0 Quantum Volume Increase: 0

ENIAC

One of the earliest electronic general-purpose computers in 1946

IBM Q Experience in 2016 First cloud quantum computing device

"We've come a long way from then, providing the most advanced and most used quantum computers on the cloud" (2018)

System 1 – IBM January 2019

Outline

Why quantum computing? Quantum Logic The IBM Q Hardware & Software Applications

Quantum chemistry

Many-body physics

Optimization

IBM released the IBM **Q** Experience in 2016

In May 2016, IBM made a quantum computing platform available via the IBM Cloud, giving students, scientists and enthusiasts hands-on access to run algorithms and experiments

IBM released the IBM **Q** Experience in 2016

QX is a fantastic tool for teaching.

Proving Bell's inequality using IBM QX is a few minutes task.

With QX you have access to a 'quantum laboratory' from home.

Test simple quantum algorithms without the need to learn any programming language.

... but you may need more

$$C = \langle AB \rangle - \langle AB' \rangle + \cdot$$

Belltes	t: 8192	shots May 2nd	11:441
	P(∞)	P(1)	P(OI)
ZW	0.484	0,380	0.070
20	0.409	0.415	0.100
XW	0.452	0.375	0-090
XV	0.110	0.077	0.451
		(C) = 2.56 ± 0.0	3

<A'B) + <A'B'>

200 P(10) (AB) 0.629 0.116 0.076 0.648 0.083 0.654 0.36 -0.626

Qiskit Community

A place for Qiskitters

Qiskit community

Qiskit is driven by our avid community of Qiskitters! We are committed to our goal of bringing quantum computing to people of all backgrounds, and are always excited to hear your feedback directly from you. There are many ways to stay informed, contribute to, and collaborate on Qiskit.

Qiskit building the software for tomorrow's computers. IBM Q

The IBM Q Experience has seen extraordinary adoption

First quantum computer on the cloud

> 100,000 users

All 7 continents

> 5.2 Million experiments run

> 120 papers

> 1500 colleges and universities, 300 high schools, 300 private institutions IBM Q Experience executions on real quantum computers (not simulations) May 11, 2018

Тегти

Terra is a collection of core, foundational body for communicating with quantum devices and simulators, them can write quantum circuits, and address wal hardware constraints with ferra. The modular design simplifies adding extensions for quantum circuit optimizations and backends.

Controlling fire was a turning point in human evolution. Learning how to fis ar control quantum errors will be a turning point in the avolution of guardum computing. Doing can access befor characterization of errors, improve gates, and compute in the presence of tokes with Sprin, 31% designed for researching and improving errors or tunke in near term quartium systems.

Aqua's a modular and extensible library for experimenting with quantum algorithms or near form devices. Users car build domain-specific applications, such as chemistry. IC and optimization with Aque. It bridges quantum and classical computers by anabling classical programming to rul or quantum devices.

Panagiotis Barkoutsos - bpa@zurich.ibm.com

high level quantum applications: chemistry, optimization, AI, finance

classical simulation of quantum circuits

Rer permeates all other Qubit elements. Users can accelerate their quantum simulator and emulator research with Aer, which helps to befor understand the limits of classical processors by demonstrating their ability to mimic quantum computation. Overs can also verify current and near-term quantum computer functionality with Nec.

QISKit: Terra

Stack

Terra inputs Quantum circuit, pulse scheduler

Transpiler Optimization passes, pass manager

QObj OpenQASM, OpenPulse

BackendProviderDevice, simulatorLocal, IBM Q, third party

Job

Result Counts, Statevector, Unitary

Panagiotis Barkoutsos - bpa@zurich.ibm.com

QISKit: Aqua

Stack

Aqua applications domains Chemistry, AI, Optimization, Finance

Translators

Quantum algorithms

Adaptive VQE, QAOA.Variational, QSVM.Variational, VQE2QPE

Many-sample EOH, QSVM.Kernel

QPE, IQPE, Grover

Qiskit Terra

BackendProviderDevice, simulatorLocal, IBM Q, third party

 \mathbb{S}

Panagiotis Barkoutsos - bpa@zurich.ibm.com

>	IBM Q 20 Tokyo (sing_20_tokyo)		ALLARIT TO	10.000, 1%	801 N
>	IBM Q 20 Austin (QSL_1)		NILABLE TO	18385, 144	
>	IBM Q 16 Rueschlikon (broast)				
>	IBM Q 5 Tenerife (beget)				
*	IBM Q 5 Yorktown (bened)	Available for free: https://quantumexperience.ng.bluemix.net/	′qx/ed	itor 5.21 55.10	
	Last Calibration: 2018-04-13 17:53:48	12 (m) Gate error (10 ⁻³)	77.50 1.37 2.40	64.00 1.37 2.60	10 M
		MultiQubit gate error (10 ⁻²)	000_3 2.72 000_3 4.18	00.2 1.77	

IBM Q QASM Simulator [temp] geom_simulator] >

ACTIVE

IBM QX Devices

AVAILABLE ON DESKET

Outline

Why quantum computing? Quantum Logic The IBM Q Hardware & Software Applications

Quantum chemistry

Many-body physics

Classical optimization

Quantum Chemistry & Physics

"I'm not happy with all the analyses that go with just the classical theory, because nature *isn't classical*, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical ..."

VoL 21, Nos. 6/7, 1982

Richard P. Feynman

International Journal of Theoretical Physics,

Simulating Physics with Computers

Possible application areas for quantum computing

We believe the following areas might be useful to explore for the early applications of quantum computing:

Chemistry

Material design, oil and gas, drug discovery

Artificial Intelligence

Classification, machine learning, linear algebra

Financial Services

Asset pricing, risk analysis, rare event simulation

Quantum chemistry: Where is it a challenge?

Solving interacting fermionic problems is at the core of most challenges in computational physics and high-performance computing:

$$H_{\rm el} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_i^2 - \sum_{i=1}^{N_{\rm el}} \sum_{A=1}^{N_{\rm nu}} \frac{Z_A}{r_{iA}} + \sum_{i=1,j>i}^{N_{\rm el},N_{\rm el}} \frac{1}{r_{ij}}$$

Full CI (exact): Classical $\mathcal{O}(\exp(N))$ Quantum $\mathcal{O}(N^4)$

Sign problem: Monte-Carlo simulations of fermions are NPhard [Troyer & Wiese, PRL 170201 (2015)]

Ivano Tavernelli - ita@zurich.ibm.com

molecular structure

reaction rates

reaction pathways

Reaction path

Quantum chemistry – Why a challenge?

Classically, several approximations have been derived to break the exponential scaling

- MP: Moller-Plesset
- CC: Coupled Cluster
- CC: Coupled Cluster
- DFT: Density Functional Theory

Number of electrons (basis functions)

Quantum chemistry – the VQE approach

Generate the orbitals (classical algorithms) Compute the system Hamiltonian	Hartree Fock equation $F(\{\phi_i(r)\})\phi_i(r)=\epsilon_i\phi_i(r)$	The Orbit
Encode the wavefunction in the qubit space. (Parametrized by the qubit angles, θ_i)	$\begin{split} \psi(\theta)\rangle &= \theta_1 1 1 1 1 0 0 \\ \theta_2 1 1 1 0 1 0 \\ \theta_{10} 1 1 0 1 0 \\ \theta_{N_c} 0 0 0 0 0 \\ \end{split}$	Control 1 Control
Evaluate the energy on a quantum circuit	$ 0\rangle - U^{1,0}(\theta) + U^{2,0}(\theta) + U^{2,1}(\theta) + U^{2,1}(\theta) + U^{2,1}(\theta) + U^{2,0}(\theta) + U^{2,0}(\theta)$	$ ightarrow \psi(heta$
Minimize the energy in a classical device	$ \begin{array}{c} E(\theta) \\ \{\theta_1, \theta_2, \dots, \theta_{N_c}\} \end{array} \longrightarrow \begin{array}{c} \mathbf{CPU} \end{array} $	

Ivano Tavernelli - ita@zurich.ibm.com

 $)\rangle \quad E(\theta)$

 $\{\theta_1', \theta_2', \ldots, \theta_{N_c}'\}$

Quantum chemistry – the VQE approach

Generate the orbitals (classical algorithms) Compute the system Hamiltonian	Hartree Fock equation $F(\{\phi_i(r)\})\phi_i(r) = \epsilon_i\phi_i(r)$	The Orbitron gallery of atomic orbitals Image: Constraint of the orbit
Encode the wavefunction in the qubit space. (Parametrized by the qubit angles, θ_i)	$ \psi(\theta)\rangle = \theta_{1} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ \theta_{2} \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ \theta_{10} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Evaluate the energy on a quantum circuit	$ 0\rangle \underbrace{U^{1,0}(\theta)}_{ U^{2,0}(\theta) } \underbrace{U^{1,1}(\theta)}_{ U^{2,1}(\theta) } \underbrace{U^{1,1}($	$\rightarrow \psi(\theta)\rangle E(\theta)$
Minimize the energy in a classical device	$\begin{bmatrix} E(\theta) \\ \{\theta_1, \theta_2, \dots, \theta_{N_c} \} \end{bmatrix} $	$\longleftrightarrow \{\theta'_1, \theta'_2, \dots, \theta'_{N_c}\}$

Ivano Tavernelli - ita@zurich.ibm.com

Quantum chemistry – The quantum algorithm The quantum-classical approach: Variational Quantum Eigensolver

QISKit: Basic workflow

At the highest level, quantum programming in QISKit is broken up into three parts:

- **Building** quantum circuits 1.
- **Compiling** quantum circuits to run on a specific 2. backend
- **Executing** quantum circuits on a backend and 3. analyzing results

Important: Step 2 (compiling) can be done automatically so that a basic user only needs to deal with steps 1 and 3.

Panagiotis Barkoutsos - bpa@zurich.ibm.com

QISKit: Basic workflow

At the highest level, quantum programming in QISKit is broken up into three parts:

```
[python3] $ pip install qiskit
from giskit import QuantumRegister, ClassicalRegister
from giskit import QuantumCircuit, Aer, execute
a = QuantumRegister(2)
c = ClassicalRegister(2)
qc = QuantumCircuit(q, c)
qc.h(q[0])
qc.cx(q[0], q[1])
qc.measure(q, c)
backend = Aer.get_backend('qasm_simulator')
job_sim = execute(qc, backend)
sim_result = job_sim.result()
print(sim_result.get_counts(qc))
```


Panagiotis Barkoutsos - bpa@zurich.ibm.com

Qiskit Aqua Chemistry Example

Panagiotis Barkoutsos - bpa@zurich.ibm.com

```
import numpy as np
from giskit_aqua_chemistry import AQUAChemistry
```

```
aqua_chemistry_dict = {
  "driver": { "name": "PYSCF" },
  "PYSCF": { "atom": "", "basis": "sto3g" },
  "operator": {
    "name": "hamiltonian",
    "qubit_mapping": "parity",
    "two_qubit_reduction": True,
    "freeze_core": True,
    "orbital_reduction": [-3, -2]
  },
  "algorithm": { "name": "VQE" },
  "optimizer": { "name": "COBYLA", "maxiter": 10000 },
  "variational_form": { "name": "UCCSD" },
  "initial_state": { "name": "HartreeFock" }
molecule = "H .0 .0 -{0}; Li .0 .0 {0}"
pts = [x * 0.1 \text{ for } x \text{ in } range(6, 20)]
pts += [x * 0.25 \text{ for } x \text{ in } range(8, 16)]
pts += [4.0]
energies = np.empty(len(pts))
distances = np.empty(len(pts))
dipoles = np.empty(len(pts))
for i, d in enumerate(pts):
  aqua_chemistry_dict["PYSCF"]["atom"] = molecule.format(d/2)
  solver = AQUAChemistry()
  result = solver.run(aqua_chemistry_dict)
  energies[i] = result["energy"]
  dipoles[i] = result["total_dipole_moment"] / 0.393430307
  distances[i] = d
```

Trial Wavefunctions

Variational Principle

Heuristic Ansatz

$$|\Psi(\vec{\theta})\rangle = \underbrace{\hat{U}^{D}(\vec{\theta})\hat{U}_{\text{ent}}\dots\hat{U}^{1}(\vec{\theta})\hat{U}_{\text{ent}}}^{\text{D-times}} \hat{U}^{0}(\vec{\theta})|\Phi_{0}\rangle$$

UCCSD Ansatz

$$|\Psi(\vec{\theta})\rangle = e^{\hat{T}(\vec{\theta}) - \hat{T}^{\dagger}(\vec{\theta})} |\Phi_0\rangle$$

$$\hat{T}_{1}(\vec{\theta}) = \sum_{i;m} \theta_{i}^{m} \hat{a}_{m}^{\dagger} \hat{a}_{i} \qquad \qquad \hat{T}_{2}(\vec{\theta}) = \frac{1}{2} \sum_{i,j;m,n} \theta_{i,j}^{m,n} \hat{a}_{n}^{\dagger} \hat{a}_{m}^{\dagger} \hat{a}_{j} \hat{a}_{i}$$

Ivano Tavernelli - ita@zurich.ibm.com

Quantum chemistry – the VQE approach Ground state-energy of simple molecules

LiH: 4 qubits 100 Pauli terms, 25 sets

*BeH*₂: 6 qubits 144 Pauli terms, 36 sets

[A. Kandala et al. Nature 549, 242-246, 2017]

Quantum chemistry – the VQE approach with error corr. Ground state-energy of simple molecules

Quantum chemistry Excited state energies

Interaction of light with matter:

- Photocatalysis \bigcirc
- Artificial photosynthesis
- Light harvesting \bullet

$$H_{\rm el} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_i^2 - \sum_{i=1}^{N_{\rm el}} \sum_{A=1}^{N_{\rm nu}} \frac{Z_A}{r_{iA}} + \sum_{i=1,j>i}^{N_{\rm el},N_{\rm el}} \frac{1}{r_{ij}}$$

Full CI (exact): Classical $\mathcal{O}(\exp(N))$ $\mathcal{O}(N^4)$ Quantum

Ivano Tavernelli - ita@zurich.ibm.com

Gate-efficient simulation of molecular eigenstates on a quantum computer

M. Ganzhorn, D.J. Egger, P. Barkoutsos, P. Ollitrault, G. Salis, N. Moll, A. Fuhrer, P. Mueller, S. Woerner, I. Tavernelli and S. Filipp IBM Research Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland (Dated: September 14, 2018)

arXiv:1809.05057

Quantum chemistry – Recent and Medium term developments Example: excited state energies of 2 and 3 atomic systems

Hubbard model

$$H_{\rm Hub} = -t \sum_{\langle i,j\rangle,\sigma} \left(c_{j\sigma}^{\dagger} c_{i\sigma} + c_{i\sigma}^{\dagger} c_{j\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

- t: hopping term
- U: in-site repulsive term
- $\langle i,j\rangle: \text{adjacent sites}$
- J. Hubbard, Proc. Roy. Soc. London, A266, 238 (1963

Study physical properties with a quantum algorithm:

- 1. Ground state with VQE
- 2. Time-dependent properties using time-propagation
- 3. Excited states and dynamics
- 4. Phase transitions and statistical physics

At some intermediate value of U/t, there will be a "metal-to-insulator" transition: the "Mott" transition.

Ivano Tavernelli - ita@zurich.ibm.com

Simulation of molecular magnetic systems

Measuring the spin-spin time-dependent correlation function

 $C_{ij}^{\alpha\beta}(t) = \langle s_i^{\alpha}(t) s_j^{\beta} \rangle$

scales exponentially with the number of sites.

A. Chiesa^{*},¹ F. Tacchino^{*},² M. Grossi,^{2,3} P. Santini,¹ I. Tavernelli,⁴ D. Gerace,² and S. Carretta¹,[†] ¹Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy ²Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy ⁹IBM Italia s.p.a., Circonvallazione Idroscalo, 20090 Segrate (MI), Italy ⁴IBM Research, Zurich Research Laboratory, Zurich, Switzerland (Dated: September 24, 2018)

Ivano Tavernelli - ita@zurich.ibm.com

Simulation of molecular magnetic systems

Measuring the spin-spin time-dependent correlation function

 $\overline{C_{ij}^{\alpha\beta}(t)} = \langle s_i^{\alpha}(t) s_j^{\beta} \rangle$

scales exponentially with the number of sites.

Ivano Tavernelli - ita@zurich.ibm.com

Quantifying entanglement. (a-c) Inelastic neutron scattering spectra as a function of the normalized transferred for three different 2 spin system with decreasing entanglement. (d-f) Corresponding inelastic neutron scattering signals integrated over Q_z .

Lattice field theory in HEP

Problem

Real-time propagation of gauge theories is notoriously challenging for classical computers. Digital quantum computers can offer a valid interesting alternative.

Solution strategy (using IBM Q 20-50 qubit devices)

- Implement fermions and gauge boson in a qubit register 1. (e.g. 1+1 Schwinger model).
- Static properties: optimization using VQE. 2.
- Time evolution using the Trotter decomposition of the 3. unitary evolution operator.

(1+1) Schwinger model

E.A. Martinez et al., Nature, 534, 516 (2016)

Outline

Why quantum computing? Quantum Logic The IBM Q Hardware & Software Applications

Quantum chemistry

Many-body physics

Optimization

Polymer folding

Problem

find the folded structure of a linear chain of beads (amino acids, AA) in a regular lattice. This is a simplified model of the more complex protein folding problem.

The size of the configuration space scales exponentially with the number of polymer beads (AA).

Solution strategy

assign binary variables to the different beads orientations in the sequence and minimize the string of binaries using the QAOA quantum algorithm and/over Grover's search. The quantum variables are lattice directions of the bonds.

Energy of the best conformation at convergence

Recent Results by **IBM Research**

Supervised learning with quantum enhanced feature spaces

Vojtech Havlicek¹,^{*} Antonio D. Córcoles¹, Kristan Temme¹, Aram W. Harrow², Abhinav Kandala¹, Jerry M. Chow¹, and Jay M. Gambetta¹ ¹IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA and ²Center for Theoretical Physics, Massachusetts Institute of Technology, USA (Dated: June 7, 2018)

arXiv:1804.11326

Possible applications:

- Customer segmentation
- Image classification
- Fraud detection

Recent Results by **IBM Research**

The data may not be linearly separable

Supervised learning with quantum enhanced feature spaces

Vojtech Havlicek¹,^{*} Antonio D. Córcoles¹, Kristan Temme¹, Aram W. Harrow², Abhinav Kandala¹, Jerry M. Chow¹, and Jay M. Gambetta¹ ¹IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA and ²Center for Theoretical Physics, Massachusetts Institute of Technology, USA (Dated: June 7, 2018)

arXiv:1804.11326

Possible applications:

- Customer segmentation
- Image classification
- Fraud detection

Quantum Support Vector Machines (SVM) may offer **performance advantages** to classical SVMs by using kernels that cannot be computed efficiently classically

Demonstrated on real quantum device

Recent Results by **IBM** Research

Example training and test set for the Kernel method:

• training data test data

support vectors

misclassified test data

Supervised learning with quantum enhanced feature spaces

Vojtech Havlicek¹,^{*} Antonio D. Córcoles¹, Kristan Temme¹, Aram W. Harrow², Abhinav Kandala¹, Jerry M. Chow¹, and Jay M. Gambetta¹ ¹IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA and ²Center for Theoretical Physics, Massachusetts Institute of Technology, USA (Dated: June 7, 2018)

Trained 3 sets of data (20 pts/label) and performed 20 classifications/label per trained set.

High energy physics

Classification (machine learning and SVM) Collaboration CERN/IBM Reserach

> Select/identify relevant LHC events

> Reconstruction of tracks - jets tracking

The Future

... is quantum

Quantum Computing and IBM Q: An Introduction #IBMQ

Thank you for your attention

Acknowledgements

IBM Q team (YKT, ZRL, Almaden, Tokyo)

